

0960-894X(94)E0138-5

AMINOPHOSPHONATE ENDOTHELIN CONVERTING ENZYME INHIBITORS: POTENCY-ENHANCING AND SELECTIVITY-IMPROVING MODIFICATIONS OF PHOSPHORAMIDON

Takehiro Fukami*, Takashi Hayama, Yuuka Amano, Yuko Nakamura, Yukiko Arai, Kenji Matsuyama, Mitsuo Yano and Kiyofumi Ishikawa

New Drug Discovery Research Laboratories, Tsukuba Research Institute,
Banyu Pharmaceutical Co., LTD. Tsukuba Techno-Park Oho, 3 Okubo, Tsukuba,
Ibaraki 300-33, Japan

Abstract. A series of α -aminophosphonic acid derivatives and a series of phosphoramidate derivatives have been synthesized and evaluated as inhibitors of a phosphoramidon-sensitive metalloproteinase endothelin converting enzyme (ECE). Some of these compounds exhibit potent ECE inhibitory activity. The most potent inhibitor (XIIb) is about 10 times as potent as phosphoramidon.

Introduction

Endothelin (ET)-1, which was first isolated from the culture medium of porcine aortic endothelial cells, is a potent vasoconstrictor consisting of 21 amino acids. Studies including a human genomic analysis have identified two structurally- and functionally-related isopeptides of ET-1 termed ET-2 and ET-3.^{2, 3, 4} Since these discoveries, evidence is accumulating that anti-ET agents may provide a novel therapy for the treatment of patients with hypertension, 5,6,7 pulmonary hypertension, 8,9,10 cerebral vasospasm, 11,12 etc.

The biosynthetic pathway of ET-1 has been proposed to be as follows: preproendothelin is initially processed by dibasic-pair-specific endopeptidase(s) to generate an intermediate peptide, big ET-1, which is subsequently cleaved at the Trp²¹-Val²² bond by a putative endothelin converting enzyme (ECE) to yield a mature peptide, ET-1. Since the proposal of this pathway, many efforts have been made to identify an ECE with physiological relevance. Consequently, a phosphoramidon-sensitive neutral metalloproteinase has been identified as the most likely candidate.^{13,14,15} This is because 1) a phosphoramidon-sensitive enzyme of vascular endothelial cells hydrolyzes the Trp²¹-Val²² bond specifically without cleaving any other peptide bond of the substrate, big ET-1, and the products, ET-1 and the C-terminal peptide¹³ and 2) phosphoramidon inhibits the production of ET-1 in cultured endothelial cells¹⁶ and big ET-1-induced contractions in isolated blood vessels in vitro¹⁷ as well as big ET-1-induced hypertension in vivo.^{18,19} However, phosphoramidon is also known to be a potent inhibitor of other metalloproteinases such as thermolysin and, in particular, enkephalinase (= neutral endopeptidase, NEP, EC 3.4.24.11), which is thought to be an ET-degrading enzyme, ^{20,21} with an IC₅₀ of 4.2 nM. Therefore, it is quite possible that phosphoramidon may potentiate biological responses to ETs, providing a complex explanation of the observed pharmacological data. It was recently reported that higher doses of phosphoramidon suppressed big ET-1-induced bronchoconstriction, while lower doses enhanced the reaction in

1258 T. FUKAMI et al.

guinea pigs. 22 A specific ECE inhibitor is therefore desired for clarifying the pathophysiological role of the ECE.

It has been reported that a phosphorous-containing inhibitor produced ECE inhibitory activity similar to that of phosphoramidon with considerable NEP inhibition.²³ However, until now a highly potent and selective ECE inhibitor has not been identified. In this communication, we describe potent and selective ECE inhibitors with aminophosphonate structure derived from phosphoramidon.

Scheme 1.

(BzlO)₂P(O)H
$$\stackrel{i}{\longrightarrow}$$
 ((BzlO)₂P-OTMS) $\stackrel{ii}{\longrightarrow}$ ((BzlO)₂P(O)-Cl) $\stackrel{ii}{\longrightarrow}$ (BzlO)₂P(O)-AA¹-AA²-OBzl $\stackrel{iii}{\longrightarrow}$ PO₃²-AA¹-AA²-O⁻³K⁺ I-V

Reagents: (i) $CH_3C(=NTMS)OTMS$, CH_3CN ; (ii) $H-AA^1-AA^2-OBzl\cdot HCl$, Et_3N , CCl_4 ; (iii) KOH (3 eq.), $H_2/Pd-C$, EtOH.

Scheme 2.

Reagents: (i) $(Bzl)_2P(O)CH_2OTf$, Et_3N , THF; (ii) H_2/Pd -C, EtOH; (iii) RCHO, Δ , toluene; (iv) $(BzlO)_2P(O)H$, toluene- CH_3CN ; (v) separation on SiO_2

Chemistry

The method for the preparation of phosphoramidate inhibitors (I-V) involved phosphorylation of a dipeptide benzyl ester followed by deprotection of the protective groups (Scheme 1). The phosphorylation was carried out in one pot in a manner analogous to the synthesis of phosphonic acid amides.²⁴ Dibenzyl phosphonate (1) was silylated by bis(trimethylsilyl)acetamide to afford dibenzyltrimethylsilyl phosphite (2). The phosphite was reacted with CCl₄ to generate the phosphoryl chloride (3), which was subsequently reacted with a dipeptide benzyl ester to yield a protected phosphoramidate (4). Catalytic hydrogenation of 4 in the presence of three equivalents of KOH²⁵ gave the desired phosphoramidate inhibitor (I-V).

Aminophosphonic acid inhibitors were prepared by the methods described in Scheme 2.²⁶ Compound VI was synthesized by catalytic hydrogenation of the tribenzyl ester 6 prepared from Leu-Trp-OBzl (5) and dibenzyl phosphonomethyltriflate in a manner similar to that described by Phillion and Androw.²⁷ The method for the preparation of compounds VII-XII involved the addition of dibenzyl phosphonate to an imine (7) prepared from Leu-Trp-OBzl (5) and an aldehyde, subsequent separation of two diastereoisomers at the α-position of the

aminophosphonate moiety of the tribenzyl ester (8) by silica gel chromatography, and deprotection by catalytic hydrogenation. Compounds VII and X were prepared as a mixture of diastereoisomers at the α-position of the aminophosphonic acid moiety because the diastereoisomers of 8 could not be separated from each other by silica gel chromatography. All of the final compounds were analyzed for homogeneity and structural integrity by TLC, ¹H-NMR, ³P-NMR, and high-resolution FAB-MS.²⁸

Biological Results and Discussion

The compounds described herein were tested for their ECE inhibitory activity.²⁹ Some of the compounds that exhibited potent ECE inhibition were further tested for NEP inhibition.³⁰

Initially, we felt that the side-chains of Leu and Trp in phosphoramidon would not fit the S1' and S2' pockets of the ECE enzyme well because in the substrate, big ET-1, the residues that correspond to the S1' and S2' sites are Val and Asn, respectively. On the other hand, it is known that des-rhamnosyl phosphoramidon (phosphoryl-Leu-Trp, I) is more potent than phosphoramidon as an inhibitor of thermolysin and other metalloproteinases. Furthermore, the rhamnose moiety of phosphoramidon is known to be unnecessary for the *in vivo* inhibition of ECE. The strain Table 1, compound I was a potent ECE inhibitor, as expected (IC₅₀ = 0.96 μ M). Compound II was a very weak ECE inhibitor (14% inhibition at 100 μ M) although it had the same P1' and P2' residues, Val and Asn, as the substrate. All other analogues of I with minor alternations (III-V) were less potent than I. These results suggest that the side-chains of Leu and Trp fit unexpectedly well into the S1' and S2' pockets of the enzyme.

Table 1. ECE Inhibitory Activity of Phosphoramidate Inhibitors PO₃²-AA¹-AA²-O⁻·3K⁺

Compound	AA ¹	AA ²	IC ₅₀ , μΜ
I	Leu	Trp	0.96
П•	Val	Asn	(14%) ^b
Ш	Leu	Nal ^c	7.4
IV	Ile	Trp	2.8
_ v	Nie	Trp	1.5

^a Compound II was prepared as a 3 Et₃N salt . ^b % inhibition at 100 µM.

Next, we planned to introduce a putative P1 unit into the inhibitor structures, thus designing α -aminophosphonic acid derivatives; namely, we thought that a substituent at the α -position of the α -aminophosphonic acid moiety might function as P1 (Fig. 1). As shown in Table 2, a reference compound, phosphonomethyl-Leu-Trp (VI), was as potent an ECE inhibitor as phosphoramidon with slightly reduced NEP inhibition. Incorporation of an n-propyl group as a representative alkyl onto the α -position of the aminophosphonic acid moiety (compound VII, a mixture of two diastereoisomers) resulted in a decrease in both ECE and NEP inhibitory activity. In contrast, the introduction of a phenethyl group yielded two diastereoisomers: one isomer (VIIIb) exhibited ECE inhibitory activity 3-fold more potent than that of the reference compound (VI), while the other (VIIIa) was almost inactive. Furthermore, compound VIIIb exhibited about 20-fold

^c 3-(1-naphthyl)-L-alanine.

1260 T. FUKAMI et al.

Fig. 1

HO
OH
P1'
N
P1
P1
P1'
N
P1
P1'
N
P1
P1'
N
P1'
N
P1'
N
CONH
COOH
OH
Phosphoramidon
IC₅₀ (ECE) = 3.1
$$\mu$$
M
IC₅₀ (NEP) = 0.0042 μ M

Table 2. ECE and NEP Inhibitory Activity of Aminophosphonic Acid Inhibitors

		IC ₅₀ , μΜ		selectivity*
Compounds	R	ECE	NEP	ECE/NEP
phosphoramidon		3.1	0.0042	1.4
VI	-H	3.4	0.024	7.1
VIIb	-CH ₂ CH ₂ CH ₃	15	0.55	37
VIIIa	-CH ₂ CH ₂ C ₆ H ₅	(33%)°	-	-
VIIIb	-CH ₂ CH ₂ C ₆ H ₅	1.1	0.13	120
IXa	-CH ₂ CH ₂ CH ₂ C ₆ H ₅	(38%) ^c	•	-
IXb	-CH ₂ CH ₂ CH ₂ C ₆ H ₅	7.1	1.1	150
$\mathbf{X}^{\mathbf{d}}$	-CH ₂ CH ₂ -3-Indolyl	1.9	0.56	290
XIa	-CH ₂ CH ₂ -C ₆ H ₄ -4-OH	(42%) ^c	-	-
XIb	-CH ₂ CH ₂ -C ₆ H ₄ -4-OH	3.0	0.13	43
XIIa	-CH ₂ CH ₂ -1-Naphthyl	31	-	-
XIIb	-CH ₂ CH ₂ -1-Naphthyl	0.26	0.14	540

^a (IC₅₀ for NEP / IC₅₀ for ECE) \times 1000. ^b This compound was synthesized as a mixture of diastereoisomers at the α-position of the aminophosphonic acid moiety (55 : 45, estimated by ¹H-NMR). ^c % inhibition at 100 μM. ^d This compound was synthesized as a mixture of diastereoisomers at the α-position of the aminophosphonic acid moiety (55 : 45, estimated by ¹H-NMR).

greater ECE/NEP selectivity compared with that of the reference compound. These results indicate that ECE strictly discriminates the stereochemistry at this position and that an aryl-containing substituent is preferable for both ECE inhibition and ECE/NEP selectivity. Therefore, we further introduced some (hetero)aryl-alkyl groups onto the \alpha-position to produce compounds IX-XII. In each analogue that was synthesized as a single isomer, only one of two diastereoisomers exhibited potent ECE inhibition. Replacement of the phenethyl group of VIIIb with a 3-phenylpropyl group resulted in a decrease in both ECE and NEP inhibitory activity (IXb vs VIIIb). Incorporation of a 2-(3-indolyl)ethyl group onto the α-position yielded compound X as a mixture of two diastereoisomers, the ratio of which was estimated as 55/45 by 1H-NMR; therefore, the IC50 value of an active isomer of this compound could be estimated at about 1 µM. Compound X was expected to exhibit highly potent ECE inhibition because the 2-(3-indolyl)ethyl group could mimic the P1 of big ET-1 (the side-chain of Trp²¹). However, at best this compound exhibited ECE inhibition as potent as that of the phenethyl analogue with slightly improved ECE/NEP selectivity (X vs VIIIb). Incorporation of a 2-(4-hydroxyphenyl)ethyl group onto the αposition produced reduced ECE inhibition and ECE/NEP selectivity (XIb vs VIIIb), while incorporation of a 2-(1-naphthyl)ethyl group resulted in a marked increase in ECE inhibitory activity together with significant improvement in ECE/NEP selectivity (XIIb vs VIIIb). Compound XIIb was the most potent ECE inhibitor with the greatest ECE/NEP selectivity among this series of analogues.

Conclusions

The introduction of a P1 unit, which does not exist in the phosphoramidon structure, into inhibitor structures enhances ECE inhibitory activity and ECE/NEP selectivity. The P1 unit appears to be very important for both ECE inhibition and ECE/NEP selectivity. The representative compound, 3-(1-naphthyl)-1phosphonopropyl-L-leucyl-L-tryptophan (compound XIIb), exhibits 10-fold more potent ECE inhibitory activity and 400 times greater ECE/NEP selectivity than does phosphoramidon. This compound is the most potent inhibitor of the phosphoramidon-sensitive metalloproteinase ECE yet known, and will be a useful tool for pharmacological studies of ECE.

Acknowledgments: It is pleasure to acknowledge the contributions of S. Nakajima (for NMR spectra) and S. Abe (for mass spectra). We are also grateful to Ms. A. Thomas and Ms. D. LeBlanc, Merck & Co., for their critical reading of this manuscript.

References and Notes:

- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto K.; Masaki, T. Nature (London) 1988, 332, 411-415.
- Inoue, A.; Yanagisawa, M.; Kimura, S.; Kasuya, Y.; Miyauchi, T.; Goto K.; Masaki, T. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 2863-2867.
- Matsumoto, H.; Suzuki, N.; Onda, H.; Fujino, M. Biochem. Biophys. Res. Commun. 1989, 164, 74-80. Shinmi, O.; Kimura, S.; Sawamura, T.; Sugita, Y.; Yoshizawa, T.; Uchiyama, Y.; Yanagisawa, M.; Goto, K.; Masaki, T.; Kanazawa, I. Biochem. Biophys. Res. Commun. 1989, 164, 587-593.
- Saito, Y.; Nakao, K.; Mukoyama, M.; Imura, H. New Engl. J. Med. 1990, 322, 205.
- Shichiri, M.; Hirata, Y.; Ando, K.; Emori, T.; Ohta, K.; Kimoto, S.; Ogura, M.; Inoue, A.; Marumo, F. *Hypertension* 1990, 15, 493-496.
- 7. Kohno, M.; Yasunari, K.; Murakawa, K.; Yokokawa, K.; Horio, T.; Fukui, T.; Takeda, T. Am. J. Medicine 1990, 88, 614-618.
- Stewart, D. J.; Levy, R. D.; Cernacek, P.; Langleben, D. Ann. Intern. Med. 1991, 114, 464-469.
- 9. Yoshibayashi, M.; Nishioka, K.; Nakao, K.; Saito, Y.; Matsumura, M.; Ueda, T.; Temma, S.; Shirakami, G.; Imura, H.; Mikawa, H. Circulation 1991, 84, 2280-2285.
- 10. Cody, R. J.; Haas, G. J.; Binkley, P. F.; Capers, Q.; Kelly, R. Circulation 1992, 85, 504-509.
 11. Masaoka, H.; Suzuki, R.; Hirata, Y.; Emori, T.; Marumo, F.; Hirakawa, K. Lancet 1989, 2, 1402.

- 12. Suzuki, H.; Sato, S.; Suzuki, Y.; Oka, M.; Tsuchiya, T.; Iino, I.; Yamanaka, T.; Ishihara, N.; Shimoda, S.
- Ann. Med. 1990, 22, 233-236.

 13. Okada, K.; Miyazaki, Y.; Takada, J.; Matsuyama, K.; Yamaki, T.; Yano, M. Biochem. Biophys. Res. Commun. 1990, 171, 1192-1198.
- 14. Ohnaka, K.; Takayanagi, R.; Yamauchi, T.; Okazaki, H.; Ohashi, M.; Umeda, F.; Nawata, H. Biochem.
- Jiniaka, R., Takayanagi, R., Tamaucin, T., Okazaki, Pl.; Ollasin, M.; Ollieda, P.; Nawata, H. Biochem. Biophys. Res. Commun. 1990, 168, 1128-1136.
 Matsumura, Y.; Ikegawa, R.; Tsukahara, Y.; Takaoka, M.; Morimoto, S. FEBS Lett. 1990, 272, 166-170.
 Sawamura, T.; Shinmi, O.; Kishi, N.; Sugita, Y.; Yanagisawa, M.; Goto, K.; Masaki, T.; Kimura, S. Biochem. Biophys. Res. Commun. 1990, 172, 883-889.
- 17. Fukuroda, T.; Noguchi, K.; Tsuchida, S.; Nishikibe, M.; Ikemoto, F.; Okada, K.; Yano, M. Biochem. Biophys. Res. Commun. 1990, 172, 390-395.
- 18. Matsumura, Y.; Hisaki, K.; Takaoka, M.; Morimoto, S. Eur. J. Pharmacol. 1990, 185, 103-106.
- 19. McMahon, E. G.; Palomo, M. A.; Moore, W. M.; McDonald, J. F.; Stern, M. K. Proc. Natl. Acad. Sci.
- McWanon, E. G., Latonic, A. B., W. W. S. A. 1991, 88, 703-707.
 Sokolovsky, M.; Galron, R.; Kloog, Y.; Bdolah, A.; Indig, F. E.; Blumberg, S.; Fleminger, G. Proc. Natl. Acad. Sci. USA. 1990, 87, 4702-4706.
 Acad. Sci. USA. 1990, 87, 4702-4706.
- 21. Vijayaraghavan, J.; Scicli, A. G.; Carretero, O. A.; Slaughter, C.; Moomaw, C.; Hersh, L. B. J. Biol. Chem. 1990, 265, 14150-14155.
- 22. Noguchi, K.; Fukuroda, T.; Ikeno, Y.; Hirose, H.; Tsukada, Y.; Nishikibe, M.; Ikemoto, F.; Matsuyama, K.; Yano, M. Biochem. Biophys. Res. Commun. 1991, 179, 830-835.
- 23. Bertenshaw, S. R.; Rogers, R. S.; Stern, M. K.; Norman, B. H.; Moore, W. M.; Jerome, G. M.; Branson, L. M.; McDonald, J. F. J. Med. Chem. 1993, 36, 173-176.
- 24. Sampson, N. S.; Bartlett, P. A. J. Org. Chem. 1988, 53, 4500-4503.
- 25. For the synthesis of II, Et₃N was used instead of KOH. Therefore, II was obtained as a 3 Et₃N salt.
- 26. After the final deprotection, these compounds were converted to tripotassium salts by adding three equivalents of KOH.
- 27. Phillion, D. P.; Andrew, S. S. Tetrahedron Lett. 1986, 27, 1477-1480.
- 28. Representative analytical data is shown below. I: R_f 0.36 in 2-propanol/concentrated ammonium hydroxide, 1:1; ¹H-NMR (300 MHz, D₂O) δ 0.55 (3H, d, J = 6.6 Hz), 0.72 (3H, d, J = 6.6 Hz), 0.90-1.00 (1H, m), 1.10-1.20 (1H, m), 1.24-1.39 (1H, d), 3.14 (1H, dd, J = 9.5, 14.5 Hz), 3.41 (1H, dd, J = 4.7, 14.5 Hz), 3.40-3.50 (1H, m), 4.51 (1H, dd, J = 4.7, 9.5 Hz), 7.15 (1H, t, J = 7.5 Hz), 7.22 (1H, t, J = 7.5 Hz), 7.27 (1H, s), 7.47 (1 H, d, J = 7.5 Hz), 7.73 (1H, d, J = 7.5 Hz); ^{31}P -NMR (121 MHz, D₂O) δ 7.82; HRMS (FAB) calcd for $C_{17}H_{23}N_{3}O_{6}PK_{2}$ (M + 2K - H)+: 474.0599; found: 474.0584.
 - II: R_f 0.39 in 2-propanol/concentrated ammonium hydroxide, 1:1; $^1\text{H-NMR}$ (300 MHz, $D_2\text{O}$) δ 0.84 (3H, d, J = 6.8 Hz), 0.97 (3H, d, J = 6.8 Hz), 1.27 (27H, t, J = 7.2 Hz), 2.03-2.16 (1H, m), 2.65-2.95 (2H, m), 3.19 (18H, q, J = 7.2 Hz), 3.47-3.60 (1H, m), 4.52-4.58 (1H, m); $^{31}\text{P-NMR}$ (121 MHz, $D_2\text{O}$) δ
 - 6.09; HRMS (FAB) calcd for $C_{15}H_{34}N_4O_7P$ (M+ Et₃N + H)⁺: 413.2165; found: 413.2175. XIIa: R_f 0.12 in CHCl₃/MeOH/AcOH, 10:1:1; ¹H-NMR (300 MHz, D₂O) δ 0.71 (3H, d, J = 5.9 Hz), 0.73 (3H, d, J = 5.9 Hz), 1.21-1.50 (3H, m), 1.62-2.06 (2H, m), 2.49-2.61 (1H, m), 2.77-2.95 (2H, m), 3.00-3.35 (3H, m), 4.58-4.68 (1H, m), 6.99-8.01 (12H, m); 31 P-NMR (121 MHz, D₂O) δ 19.19; HRMS (FAB) calcd for C₃₀H₃₄N₃O₆PK₃ (M + 3K - 2H)⁺: 680.1096; found: 680.1118.

 XIII: R_f 0.32 in CHCl₃/MeOH/AcOH, 10:1:1; 11 H-NMR (300 MHz, D₂O) δ 0.78 (3H, d, J = 5.7 Hz),
 - 0.80 (3H, d, J = 5.7 Hz), 1.22-1.53 (3H, m), 1.55-1.84 (1H, m), 1.96-2.15(1H, m), 2.40-2.53 (1H, m), 2.58-2.74 (1H, m), 2.87-3.13 (2H, m), 3.23-3.40 (2H, m), 4.51 (1H, dd, J = 4.9, 8.4 Hz), 6.93-8.00 (12H, m); 31 P-NMR (121 MHz, D₂O) δ 20.42; HRMS (FAB) calcd for C₃₀H₃₄N₃O₆PK₃ (M + 3K 2H)+: 680.1096; found: 680.1112.
- 29. The ECE assay was carried out as previously reported. 13 Briefly, the enzyme fraction was prepared from the microsomal fractions of bovine cultured endothelial cells by solubilization with 0.5% Triton X-100. The substrate used for the assay was 1.0 µM big ET-1 and the product formed was measured by radioimmunoassay for ET-1.
- 30. The NEP assay was performed according to the method of Orlowski et al.³¹ Briefly, microsomal fractions of rat small intestine were used as the NEP preparation. Synthetic substrate (glutaryl-Ala-Ala-Phe-4-methoxy-2naphthylamide) was used for the assay.
- 31. Orlowski, M.; Wilk, S. Biochemistry 1981, 20, 4942-4950. 32. Kam, C. M.; Nishino, N.; Powers, J. C. Biochemistry 1979, 18, 3032-3038.
- 33. Pollock, D. M.; Shiosaki, K.; Sullivan, G. M.; Opgenorth, T. J. Biochem. Biophys. Res. Commun. 1992, 186, 1146-1150.